Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sanjay Sarkhel, ${ }^{\text {a }}$ Umesh Yadava, ${ }^{\text {a }}$ Prem Prakas, ${ }^{\text {b }}$ Girish K. Jain, ${ }^{\text {b }}$ Satywan Singh ${ }^{\mathrm{b}}$ and Prakash R. Maulik ${ }^{\text {a }}$
${ }^{\text {a }}$ Membrane Biology Division, Central Drug Research Institute, Lucknow 226 001, India, and
${ }^{\mathbf{b}}$ Division of Pharmaceutics, Central Drug Research Institute, Lucknow 226 001, India

Correspondence e-mail:
maulik_prakas@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.063$
$w R$ factor $=0.237$
Data-to-parameter ratio $=8.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Guggulsterone E, a lipid-lowering agent from Commiphora mukul

The crystal structure of the title compound [4,17(20)-(cis)-pregnadiene-3,16-dione, $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}$] shows that the two molecules in the asymmetric unit have similar conformations. The fused-ring system contains one sofa, two chairs and one envelope. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, together with van der Waals interactions, stabilize the structure.

Comment

Guggulsterone E, an active constituent of an ayurvedic drug guggulip derived from Commiphora mukul (Verma et al., 1998), possesses a significant cholesterol and lipid-lowering activity. It has been marketed in India as a hypolipidaemic drug. In view of its potential medicinal importance, the present study of the title compound, (I), was undertaken to determine the conformation of its steroid nucleus.

(I)

The X-ray diffraction study of (I) shows that the asymmetric unit contains two molecules of similar conformations and the structure of one molecule with the atomic numbering scheme is shown in Fig. 1. The molecule contains one fused-ring system $(A / B / C / D)$ and five chiral centres. The torsion angles (Table 1) and least-squares-plane calculations indicate that, in both the molecules in the asymmetric unit, ring A is in a distorted sofa conformation, while rings B and C adopt a puckered and nearly a chair conformation, respectively. Ring D adopts an envelope conformation. The ring systems B / C and C / D are trans-fused with each other.

Based on literature precedence (Hill et al., 1991), the pregnane steroids have C 10 -substituents in a β-orientation. Accordingly, the methyl groups at C 10 and C 13 have β-axial orientation in both the molecules in the asymmetric unit. The shorter bond lengths C3-C4/C33-C34 1.453 (12)/ 1.428 (11) \AA and $\mathrm{C} 16-\mathrm{C} 17 / \mathrm{C} 46-\mathrm{C} 471.470$ (11)/1.500 (12) \AA are indicative of possible double-bond conjugation. The torsion angles $\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19-174.5$ (7) ${ }^{\circ}$ and $\mathrm{C} 46-$ C47-C48-C49-177.8 (7) ${ }^{\circ}$ indicate that the title compound is the E-isomer of guggulsterone. The crystal structure analysis reveals the presence of weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$

Received 6 February 2001
Accepted 14 February 2001
Online 28 February 2001
CDRI communication No. 6135.
interactions (Table 2) which, along with the van der Waals forces, stabilize the solid-state structure.

Experimental

Guggulsterone E was isolated by column chromatography of the ethyl acetate extract from Commiphora mukul following the available protocol (Patil et al., 1972). Diffraction-quality crystals were grown by slow evaporation of a methanol solution at room temperature.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}$
$M_{r}=312.44$
Monoclinic, $P 2_{1}$
$a=7.4634$ (11) A
$b=13.747$ (2) \AA
$c=17.352(3) \AA$
$\beta=94.862(12)^{\circ}$
$V=1773.8(5) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.170 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 50 \\
& \text { reflections } \\
& \theta=2.3-12.3^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Needle, colourless } \\
& 0.35 \times 0.25 \times 0.20 \mathrm{~mm} \\
& \\
& h=-1 \rightarrow 8 \\
& k=-16 \rightarrow 1 \\
& l=-20 \rightarrow 20 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { frequency: } 60 \text { min } \\
& \text { intensity decay: none }
\end{aligned}
$$

Data collection

Bruker P4 diffractometer

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1494 P)^{2}\right.$
$+1.4424 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.20 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$
Absolute structure: Flack (1983)
Flack parameter $=-1(4)$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

C10-C1-C2-C3	-52.0 (8)	C32-C33-C34-C35	-4.6 (12)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	29.3 (10)	C33-C34-C35-C40	-4.7 (12)
C2-C3-C4-C5	-1.3 (13)	C40-C35-C36-C37	-54.2 (9)
C3-C4-C5-C10	-4.6 (13)	C35-C36-C37-C38	54.4 (9)
C10-C5-C6-C7	-48.0 (10)	C36-C37-C38-C39	-54.9 (8)
C5-C6-C7-C8	52.5 (9)	C37-C38-C39-C40	56.8 (8)
C6-C7-C8-C9	-56.8 (8)	C32-C31-C40-C50	-75.4 (8)
C7-C8-C9-C10	58.3 (7)	C32-C31-C40-C35	45.4 (8)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 5$	45.3 (8)	C34-C35-C40-C31	-15.8 (10)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 20$	-72.9 (8)	C36-C35-C40-C39	50.9 (8)
C4-C5-C10-C1	-17.5 (10)	C38-C39-C40-C35	-52.0 (7)
C6-C5-C10-C9	45.3 (8)	C41-C42-C43-C51	-68.0 (8)
C8-C9-C10-C5	-50.8 (7)	C47-C43-C44-C45	38.1 (7)
C11-C12-C13-C21	-67.0 (8)	C43-C44-C45-C46	-38.0 (8)
C17-C13-C14-C15	40.0 (6)	C44-C45-C46-C47	22.2 (8)
C13-C14-C15-C16	-36.8 (7)	$\mathrm{C} 45-\mathrm{C} 46-\mathrm{C} 47-\mathrm{C} 43$	1.2 (8)
C14-C15-C16-C17	19.7 (8)	C44-C43-C47-C46	-23.5 (7)
C15-C16-C17-C13	5.6 (8)	C46-C47-C48-C49	-177.8 (7)
C14-C13-C17-C16	-27.8 (6)	H9-C9-C8-H8	-178
C16-C17-C18-C19	-174.5 (7)	H39-C39-C38-H38	-179
C40-C31-C32-C33	-54.8 (9)	C21-C13-C14-H14	176
C31-C32-C33-C34	33.3 (10)	C51-C43-C44-H44	176

Figure 1
The molecular structure of (I) with labelling of the non-H atoms and displacement ellipsoids at the 50% probability level.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 21-\mathrm{H} 21 \mathrm{C} \cdots \mathrm{O} 2^{\mathrm{i}}$	0.96	2.745	3.625 (10)	153
$\mathrm{C} 21-\mathrm{H} 21 \mathrm{~B} \cdots \mathrm{O} 31^{\text {i }}$	0.96	2.813	3.723 (10)	159
$\mathrm{C} 32-\mathrm{H} 32 \mathrm{~B} \cdots \mathrm{O} 2{ }^{\text {ii }}$	0.97	2.453	3.237 (10)	138
$\mathrm{C} 45-\mathrm{H} 45 A \cdots \mathrm{O} 1^{\text {iii }}$	0.97	2.425	3.274 (11)	146
$\mathrm{C} 50-\mathrm{H} 50 \mathrm{~B} \cdots \mathrm{O} 32^{\text {iii }}$	0.96	2.759	3.641 (10)	153
C51-H51B $\cdots \mathrm{O}^{\text {iii }}$	0.96	2.725	3.678 (12)	172

All H atoms were placed in idealized positions geometrically and allowed to ride on their parent atoms. The present study does not establish the absolute configuration of the title molecule, and it is not known from other work. There are only 281 Friedel pairs, and the anomalous scattering effects are negligible.

Data collection: XSCANS (Siemens, 1996); cell refinement: $X S C A N S$; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-NT (Bruker, 1997); program(s) used to refine structure: SHELXTL-NT; molecular graphics: NRCVAX (Gabe et al., 1989) and ORTEP (Johnson, 1965); software used to prepare material for publication: SHELXTL-NT.

SS thanks CSIR (India) for an SRF award.

References

Bruker (1997). SHELXTL-NT. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gabe, E. J., Le Page, Y., Charland, J. -P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Hill, R. A., Kirk, D. N., Makin, H. L. J. \& Murphy, G. M. (1991). Dictionary of Steroids. London: Chapman and Hall.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Patil, V. D., Nayak, U. R. \& Dev, S. (1972). Tetrahedron, 28, 2341-2352.
Siemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Verma, N., Singh, S. K. \& Gupta, R. C. (1998). J. Chromatogr. B, 708, 243-248.

